Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Karen J. Nordell, ${ }^{\mathbf{a} *}$ Kristin N. Schultz ${ }^{\text {b }}$ and Mark D. Smith ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, Lawrence University, Appleton, Wisconsin 54912, USA, ${ }^{\text {b }}$ Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA, and ${ }^{\text {c }}$ Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA

Correspondence e-mail:
karen.nordell@lawrence.edu

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.041$
$w R$ factor $=0.081$
Data-to-parameter ratio $=13.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-Diaquatetrakis(4,4'-methylenediphenyl-amine- κN)cobalt(II) dinitrate dihydrate

The hydrothermally prepared title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{13} \mathrm{H}_{14}{ }^{-}\right.\right.$ $\left.\left.\mathrm{N}_{2}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, consists of mononuclear cationic complexes of six-coordinate cobalt(II), together with nitrate counter-ions and uncoordinated water molecules. Four monodentate $4,4^{\prime}$-methylenediphenylamine (dapm) ligands and two water molecules comprise the octahedral coordination of the $\mathrm{Co}^{\mathrm{II}}$ ion, which lies on an inversion center. The compound is isostructural with the previously reported Cd and Ni analogs.

Comment

The structure of the title compound, (I), consists of a pseudooctahedral Co^{2+} complex with four monodentate dapm ligands [dapm is $4,4^{\prime}$-methylenediphenylamine] coordinated through one amine N and two water molecules, as shown in Fig. 1, with two nitrate ions and two uncoordinated water molecules. The Co^{2+} ion lies on a crystallographic inversion center. Hydrothermally prepared (I) is isostructural with the Cd and Ni analogs obtained from room temperature evaporation of water-alcohol mixtures of the $M\left(\mathrm{NO}_{3}\right)_{2}$ salt $(M=\mathrm{Cd}, \mathrm{Ni})$ and dapm (Wang et al., 2001; Zhang et al., 2001).

(I)

Experimental

The title compound was prepared by hydrothermal reaction of 4,4'methylenedianiline (dapm) $\quad(0.0240 \mathrm{~g}, \quad 0.12 \mathrm{mmol}) \quad$ with $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.0386 \mathrm{~g}, 0.11 \mathrm{mmol})$ in water $(0.80 \mathrm{ml})$ in an evacuated sealed Pyrex tube. The tube was heated to 358 K at 1 K

Figure 1
The structure of (I). Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: (') $1-x 1,-y, 1-z$. The symmetryrelated nitrate ion and uncoordinated water molecule are not shown.

Received 4 May 2004

Accepted 17 May 2004
Online 29 May 2004
$\min ^{-1}$, and held at that temperature for 8 h before slowly cooling ($0.2 \mathrm{~K} \mathrm{~min}^{-1}$) to 303 K . Pale-orange block-shaped crystals were formed along with some pink powder. Analysis calculated for $\mathrm{C}_{52} \mathrm{H}_{64} \mathrm{CoN}_{10} \mathrm{O}_{10}$: C 59.59 , H 6.16, N 13.36%; found: C 59.25, H 5.87, N 13.22%.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]-$

$$
\left(\mathrm{NO}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}
$$

$$
M_{r}=1048.06
$$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.370 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 6696 \\
& \quad \text { reflections } \\
& \theta=2.3-26.3^{\circ} \\
& \mu=0.41 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, pale orange } \\
& 0.42 \times 0.24 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

Triclinic, $P \overline{1}$
$a=9.2265$ (5) \AA 。
$b=11.6587$ (6) \AA
$c=11.9719$ (7) \AA
$\alpha=80.920(1)^{\circ}$
$\beta=87.804(1)^{\circ}$
$\gamma=89.488(1)^{\circ}$
$V=1270.73(12) \AA^{3}$
Data collection

Bruker SMART APEX CCD	5200 independent reflections
diffractometer	3875 reflections with $I>2 \sigma(I)$
ω and φ scans	$R_{\text {int }}=0.030$
Absorption correction: multi-scan	$\theta_{\max }=26.4^{\circ}$
$(S A D A B S ;$ Bruker, 1999$)$	$h=-11 \rightarrow 11$
$T_{\min }=0.619, T_{\text {max }}=0.928$	$k=-14 \rightarrow 14$
11803 measured reflections	$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.081$
H atoms treated by a mixture of independent and constrained refinement
$S=0.99$
5200 reflections
379 parameters

Table 2
Hydrogen-bonding geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots \mathrm{A}$	$D-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O}^{\text {i }}$	0.90 (2)	2.22 (2)	3.114 (2)	173.2 (18)
$\mathrm{N} 3-\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O} 3^{\text {ii }}$	0.82 (2)	2.52 (2)	3.263 (3)	150.0 (19)
$\mathrm{O} 1-\mathrm{H} 1 W A \cdots \mathrm{O}^{\text {ii }}$	0.79 (2)	1.99 (3)	2.779 (2)	175 (3)
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 5^{\text {iii }}$	0.93 (3)	2.29 (3)	3.107 (3)	147 (2)
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{WA} \cdots \mathrm{O} 5^{\text {iii }}$	0.76 (4)	2.56 (4)	3.193 (4)	142 (4)
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O}^{\text {iv }}$	0.86 (3)	2.46 (3)	3.258 (4)	156 (2)
$\mathrm{N} 4-\mathrm{H} 44 \cdots \mathrm{O} 4^{\text {v }}$	0.96 (2)	2.14 (3)	3.048 (3)	157 (2)
$\mathrm{O} 1-\mathrm{H} 1 W B \cdots \mathrm{O} 2^{\text {vi }}$	0.83 (2)	1.87 (3)	2.694 (3)	170 (2)
$\mathrm{O} 2-\mathrm{H} 2 W B \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.72 (4)	2.26 (4)	2.958 (5)	165 (5)

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $-x,-y, 1-z$; (iii) $x, y, z-1$; (iv) $x, y-1,2+z ;(\mathrm{v})-x, 1-y,-z ;$ (vi) $1-x,-y,-z$.

H atoms attached to C atoms were geometrically idealized, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}) . \mathrm{H}$ atoms on N atoms and water O were located and refined freely with isotropic displacement parameters.

Data collection: SMART-NT (Bruker, 1999); cell refinement: SAINT-Plus-NT (Bruker, 1999); data reduction: SAINT-Plus-NT ; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: XP in SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Funding was provided by Lawrence University and by the National Science Foundation through grant DMR:9873570.

References

Bruker (1999). SMART-NT (Version 5.624), SAINT-Plus-NT (Version 6.02a) and $S A D A B S$. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Wang, R., Hong, M., Weng, J., Cao, R., Liang, Y. \& Zhao, Y. (2001). Acta Cryst. E57, m344-m345.
Zhang, Y., Lei, Z., Jianmin, L., Nishiura, M. \& Imamoto, T. (2001) J. Mol. Struct. 559, 55-58.

